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Abstract. We investigate the dynamics of football matches. Our goal is to characterize statistically the
temporal sequence of ball movements in this collective sport game, searching for traits of complex behav-
ior. Data were collected over a variety of matches in South American, European and World championships
throughout 2005 and 2006. We show that the statistics of ball touches presents power-law tails and can
be described by q-gamma distributions. To explain such behavior we propose a model that provides infor-
mation on the characteristics of football dynamics. Furthermore, we discuss the statistics of duration of
out-of-play intervals, not directly related to the previous scenario.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 89.90.+n Other topics in areas
of applied and interdisciplinary physics – 01.80.+b Physics of games and sports

1 Introduction

The statistical analysis of physical systems has been fun-
damental for the identification of underlying mechanisms.
This kind of analysis has also found applications in other
fields, such as biology, economics and social sciences,
with a reciprocal feedback for understanding physical sys-
tems. In any context, when dealing with complex sys-
tems, where individual, collective and aleatory features
may be present, a central interest is to trace general statis-
tical properties of the dynamics. This suggests a direction
to investigate, amongst other human activities, collective
sports such as the most popular one: football. In fact, in
football matches, player actions range from elementary in-
dividual reactions to elaborated strategies involving sev-
eral players, motivating the search for traits of complex
behavior.

Amongst the diverse football games, we restrict our
study to male official association football (soccer). Be-
cause of its popularity and widespread diffusion in the
media, an abundant source of observational data is ac-
cessible. Previous works have dealt mainly with macro-
scopic features measured over ensembles of matches (cups
or championships) [1–4], such as the statistics of goals.
Meanwhile, the present goal is to characterize a micro-
scopic dynamics throughout each match. From a related
perspective, the detection of temporal patterns of behav-
ior has been pursued before [5]. Differently, in this work,
we analyze the stream of ball events throughout a match
from a statistical point of view. We focus on the temporal
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aspects, without taking into account any spatial counter-
part, e.g., players or ball trajectories in space.

The results we report in this paper derive from in-
formation collected over twenty six matches in South
American and European championships in 2005–2006
(Tab. 1). Temporal series were obtained from the sequence
of touches in each football match.

After the presentation of collected data in Section 2,
we expose in Section 3 our modeling of the statistics of
times between touches, starting with simple exponential
distributions, refining the description through gamma dis-
tributions and finally through generalized gamma distri-
butions. Basically, we show that a non-stationary Poisson
process allows to describe with success the main statistical
properties. Before making final observations (Sect. 5), we
also discuss the statistics of in and out-of-play intervals
(Sect. 4). On one hand our results show the possibility of
applying statistical physics methods to study collective as-
pects of sports such as football, evidencing interesting fea-
tures. On the other, we exhibit a concrete example where
the mechanisms of the “superstatistics” recently proposed
by Beck and Cohen [6], in connection with Tsallis statis-
tics [7], and where a generalized gamma distribution (q-
gamma) plays a central role, apply. Therefore, our results
may provide insights on a more general context.

2 Data acquisition and preliminary analysis

Data were acquired from TV broadcasted matches, with
the aid a computer program that records (with precision of
10−2 s) the instants of time at which predetermined keys
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Fig. 1. Time series of T (time that elapses between consecutive
touches). The match is Chelsea × Barcelona in 22/Feb./2006
(UEFA Champions League). Symbols are joined by linear seg-
ments whenever there is no interruption between touches.

are clicked. Thus, time was recorded by clicking when a
given player action takes place. Considering that the av-
erage human reaction time is about 0.1–0.2 s, this may
lead to a systematic error of that order in data recording.
However, in the present study we are interested in time dif-
ferences, therefore, any systematic error will be reduced.
Moreover, some of the matches were first recorded and
then played in slow motion for data collection, showing
no significant differences from those obtained in real time.
Also, in order to check that other biases were not being
introduced by the observer, the authors independently ob-
tained the data for some of the matches and verified that
the corresponding distributions essentially remained the
same.

For each match considered, we monitored the occur-
rence of touches (kicks, headers, shots, throw-ins, etc.)
that change the player in possession of the ball. That is,
touches from one player to himself were not taken into
account. The instants of occurrence of ball touches were
recorded without making distinction on the type of touch,
nor on the subsequent movement of the ball (rolls, flies,
etc.), nor on whether it was intentional or accidental.
Moreover, touches were not distinguished by teams. We
also recorded the time at which each sequence of touches
ends, that typically corresponds to the instant when the
whistle is blown.

First, let us consider the variable T corresponding to
the time that elapses between two consecutive touches
occurring without interruption of the match (inter-touch
time). A typical time series of inter-touch times in a match
is exhibited in Figure 1. This plot manifests the discon-
tinuous nature of football activity where the sequences of
touches are interrupted by events such as the ball leaving
the field, player fouls, defective ball, external interference
or any other reason to stop the game. Then, time series
are characterized by sequences of ball-in-play fragments.

Typical histograms of inter-touch times T and incre-
ments ∆T (between consecutive inter-touch times) are
presented in Figures 2a, 2b. Unless otherwise stated to the
contrary, in this and subsequent analyses, touches of goal-
keepers were not considered, because of the singular role
in the game. These plots, built for the match of Figure 1,
are quite similar to those observed for other matches. In all

Fig. 2. Normalized histograms of (a) inter-touch times and
(b) their increments, for the match of Figure 1. The inset in
(a) is a semi-log representation of the same data plotted in the
main frame. Dashed lines represent: (a) Gamma PDF given
by equation (2) with parameters β = 3.43 ± 0.17 and τ/s =
0.85±0.05, and (b) the corresponding PDF of increments given
by equation (4). The full line in (b) corresponds to equation (6).

Fig. 3. Cumulative distribution of increments. In (a)
F|∆T |(t) = Prob(|∆T | ≥ t) was computed for each of the
twenty matches listed in Figure 4. In (b), increments are scaled
by the respective exponential decay time τ ′ obtained from the
exponential fit to each curve in (a), performed for values up to
approx. 2τ ′ only.

cases the decay of the probability density function (PDF)
of inter-touch times is approximately exponential and the
PDF of increments presents a “tent” shape in the semi-log
representation, suggesting a double exponential decay.

Histograms of the increments, built for several
matches, are exhibited in Figure 3a. Cumulative distri-
butions were considered to reduce fluctuations. In order
to quantitatively characterize each match, we calculated
the exponential decay time τ ′, since in all cases the ini-
tial decay is exponential. Calculation of τ ′ was performed
through an exponential fit to the cumulative distributions
of increments over the interval ∆T < 4 s. The fitting pro-
cedure, that will be denominated WLS along the paper,
was weighted least squares, with weights wi = 1/|yi| at-
tributed to each data point (xi, yi), and was performed
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by means of commercial software Origin. Figure 3a al-
ready exhibits qualitatively the narrow statistical diversity
found from one match to another, concerning the most fre-
quent events. Constraints, such as rules of the game and
human effort limitations, confine single realizations to a
narrow spectrum. In fact, values of τ ′ fall within the nar-
row interval τ ′ = (1.89± 0.18) s. Collapse of the re-scaled
data is observed up to |∆T | � 2τ ′ only (Fig. 3b). Natu-
rally, deviations from the mean behavior occur for large
∆T because events are rare.

3 Modeling inter-touch time statistics

Let us consider the random variable Xt representing the
number of occurrences during the period [0, t). If the
stochastic process {Xt, t > 0} were purely Poissonian (as
commonly considered for arrival time statistics), with ex-
pected rate 1/τ , then the PDF of inter-touch times should
be the exponential fT (t) = e−t/τ/τ [8]. Moreover, given
two independent variables T1 and T2 with the same expo-
nential distribution, the increment ∆T = T2 − T1 has the
so called double exponential or Laplace PDF

f∆T (t) =
1
2τ

e−|t|/τ . (1)

Although the distribution of increments ∆T is in good
accord with a Laplace PDF, at least for central values,
the distribution of inter-touch times T is clearly not a
pure exponential (see Fig. 2a). Therefore, the exponential,
with one single fitting parameter, constitutes a very coarse
model for the histograms of inter-touch times.

Instead, the time interval between touches can be
thought to be composed, in average, of a certain num-
ber β of independent phases. If each of the phases is τ -
exponentially distributed, then one obtains the Erlang dis-
tribution:

fT (t) =
1

τΓ (β)
(t/τ)β−1e−t/τ ≡ Γβ,τ(t), (2)

defined for t ≥ 0. This PDF is also known as gamma dis-
tribution, for real β > 0. In the particular case β = 1, one
recovers the pure exponential distribution. However, in the
vicinity of the origin the PDF of inter-touch times has a
shape compatible with β > 1. In fact, very short inter-
touch times are not frequent since players are not typi-
cally so close to each other. Very long inter-touch times
are also scars since teams dispute ball possession almost
all the time. Moreover, let us remark that the Erlang dis-
tribution is commonly used for modeling the distribution
of times to perform some compound task, such as repair-
ing a machine or completing a customer service [9]. Also
in the present case, when a player receives the ball, it is
common that he executes more than one task, such as,
keeping possession of the ball, avoiding opponents, and
passing the ball to another member of his team. In what
follows we do not restrict β to take integer values. Then
β can be interpreted as an average number of phases.

Fig. 4. Parameters β and τ , obtained from the WLS fit of the
gamma distribution to the histograms of inter-touch times, for
the matches indicated in the abscissa axis (see Tab. 1 for letter
code). Parameter τ ′, obtained from cumulative histograms of
increments is also exhibited. Matches were ranked by decreas-
ing β.

Figure 2a shows the results of WLS fitting the gamma
PDF to the numerical histograms of inter-touch times.
We observe a clear improvement in the description of the
statistics of inter-touch times, in comparison with the pure
exponential model, for small and moderate times. Assum-
ing a gamma distribution, parameters β and τ were deter-
mined by means of a least square fit to empirical PDFs,
using statistical weights in order to ponder the tails of
the distributions. Even so, although a good description of
numerical histograms is obtained for small and moderate
values, there are important deviations at the tails. This
also suggests that the gamma distribution may not be a
very good model for the present data. Figure 4 exhibits
the values of parameters β and τ for several matches, to-
gether with the value of τ ′ (for the cumulative distribution
of increments). Values of τ are found within the interval
[0.68, 1.06], with average value 0.91, while β values fall
within the interval [2.6, 4.2], with mean 3.24. There is a
tendency that faster games (smaller τ) are characterized
by a larger β, as clearly observed in Figure 4. There is also
a trend that more decisive matches or matches played by
highly ranked teams have smaller τ and larger β, e.g., PA,
SL are final matches, AR, CB are usual matches of the
UEFA champions league. These tendencies are expected
because in such matches players usually save no efforts
and strategies are more elaborated. If we assume that
successive inter-touch times are independent identically
gamma-distributed variables, then, the PDF of increments
becomes

f∆T (t) =
e−|t|/τ

τ2β [Γ (β)]2

∫ ∞

0

[x(|t| + x)]β−1e−2x/τ dx . (3)

Notice that this function has the same asymptotic behav-
ior as the Laplace PDF but it is smoother at the origin. In
particular, for β = 3 (integer value closer to the average
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one), one gets

f∆T (t) =
1

16τ
[3 + (3 + |t|/τ)|t|/τ ] e−|t|/τ . (4)

Once obtained the values of parameters (β, τ) for the dis-
tribution of inter-touch times, they were used to predict
the PDF of increments by means of equation (3). From the
results, shown in Figure 2b, one concludes that the pre-
diction of the PDF of increments, assuming independence
of consecutive inter-touch times, is satisfactory except at
the tails.

Let us discuss some points that may be responsible for
deviations from the simple Poissonian framework. First,
we investigated the assumption of independence of occur-
rences in non-overlapping intervals. We calculated auto-
correlation functions both for variables T and ∆T , taking
into account the intrinsically discontinuous nature of the
time series. Hence, only pairs of times belonging to the
same sequence of touches were considered. No significant
correlations were detected in the series of T , although the
series of ∆T typically presents traits of antipersistence.
Hence, despite the existence of strategies and patterns in-
volving several players (some in cooperation and others in
opposition), the lack of significant correlations indicates
that memory effects in the succession of touches are very
weak.

Another possibility for the failure of the simple Poisso-
nian picture concerns stationarity and homogeneity. In or-
der to investigate this aspect, we analyzed for each match
the number of events N as a function of time, as illus-
trated in Figure 5. Beyond the discontinuity of the time
series, temporal inhomogeneities throughout a match are
common. First of all, average rates computed over each
half of the matches are almost always different. In most of
the cases, these average rates are larger in the first half,
as soon as players are usually more tired in the second
half of a match. At a finer time scale, small segments with
different rate (slope) can be identified (especially during
the first half, in the case of Fig. 5a). This feature is a man-
ifestation of the change of rhythms throughout a match.
We estimated local rates λ ≡ 1/τ as λ = n/tIN , where
tIN is the duration of each full sequence of ininterrupted
touches and n is the number of touches in that sequence.
The histogram of rates λ is shown in Figure 5b. Mean-
while panel (c) displays λ as a function of time, putting
into evidence its fluctuating character.

We will see that the fact that the rate of occurrence
λ is not constant, but instead it is a fluctuating quantity,
may explain the behavior of the tails of inter-touch time
distributions. In effect, let us interpret the PDF Γβ,1/λ(t)
as the conditional PDF fT |λ of variable T given λ, where λ
is a stochastic variable. Moreover, let us also assume that
λ is gamma distributed, i.e., fλ(x) = Γα,κ(x). Although
this may be only a crude estimation of the distribution of
local rates, it takes into account its main features, except
deviations at the tails (see Fig. 5b). Under the assump-
tions above, the marginal PDF has the form [6,10,11]

fT (t) =
∫

dxfλ(x)fT |λ(t, x) = N tβ−1e−t/τ
q , (5)

Fig. 5. Number of events as a function of time (a), for
the match of Figure 1. Histogram of local rates λ (b). Solid
lines represent WLS fits of a gamma distribution Γα,κ with
(α, κ/s−1) = (11.1, 0.032). Local rate λ as a function of
time (c).

where N is a normalization factor, τ = 1/[(α + β)κ],
q = 1 + 1/(α + β) and the q-exponential function (eq) for
negative argument is defined as e−x

q = [1+(q−1)x]
1

1−q , if
q > 1. This PDF that generalizes the gamma distribution,
is known as F -distribution or also as q-gamma distribu-
tion [12]. Panel (a) of Figure 6 shows the WLS fit with the
q-gamma function to the same data of Figure 2. In order
to asses the goodness of fit we applied the Kolmogorov-
Smirnoff test [13]. We calculated confidence levels α by
determining the largest deviation between the cumulative
distribution that arises from WLS fit and the observed
one. We obtained higher confidence levels for the q-gamma
model. As illustration, for match CB, the gamma and q-
gamma fits yielded α = 7% and 32%, respectively. Fur-
thermore, the chi-square value of fit and the correlation
coefficient for match CB were (χ2, R2) = (0.0009, 0.99)
(against (0.002, 0.97) for the simple gamma distribution).

Although at the cost of introducing one more param-
eter, the q-gamma model is satisfactory for the full range
of values. The advantage of introducing one more param-
eter was quantified through Akaike information criterium
(AIC = 2k − 2 lnL, where k is the number of param-
eters and L the maximum likelihood) and also through
Schwarz criterium (SIC = k ln(n) − 2 ln L, where n is the
number of observations), which penalizes more strongly
the introduction of free parameters [14]. In all cases the
q-gamma distribution yielded lower values. For exam-
ple, (AIC, SIC) = (3726, 3741) (against (3760, 3772) ob-
tained with the simple gamma) for CB and (82 694, 82 718)
(against (83 650, 83 666)) for the global set.

Furthermore the PDF of increments, which generalizes
equation (3), namely,

f∆T (t) ∝
∫ ∞

0

[x(|t| + x)]β−1e−x/τ
q e−(|t|+x)/τ

q dx , (6)
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Fig. 6. Normalized histograms of inter-touch times, (a) for
the match of Figure 1 and (b) for all the matches investigated.
Dashed lines correspond to the gamma distribution with pa-
rameters (β, τ/s) = (3.43±0.17, 0.85±0.05) (a) and (3.12±0.12,
0.95 ± 0.05) (b). Solid lines correspond to the q-gamma dis-
tribution with parameters (β, τ/s, q) = (4.45 ± 0.35, 0.43 ±
0.07, 1.066± 0.007) (a), (4.20± 0.17, 0.43± 0.04,1.076± 0.003)
(b). Insets: linear representations of the same data.

also describes better numerical data (see Fig. 2b, where
the full line is the predicted PDF of increments using the
parameters of Fig. 6a).

In Figure 6b, all the matches were merged. In this case,
the merging procedure by itself might give rise to the dis-
persion of λ responsible for the behavior of the tails. This
global analysis, however, is useful for characterizing the
average behavior of football activity as a whole. Since,
as observed before, diversity is not very high amongst
matches, one observes for the merged data a behavior
similar to that observed for a single match (illustrated
in Fig. 6a), although the statistics is poorer in the latter
case.

The introduction of parameter q allows to describe bet-
ter the statistics of rare events. Notice that, in comparison
with the gamma fits, the q-gamma ones yield β about one
unit larger and τ about one half smaller. Alternatively,
assuming that the fluctuating rates obey a gamma distri-
bution Γα,κ, one can obtain q (i.e., q = 1+1/(α+β)) and
τ (i.e., τ = 1/[(α + β)κ]) for the resulting q-gamma dis-
tribution. The values of q are very close to those obtained
by directly fitting the q-gamma distributions (q � 1.07).
Whereas, the resulting values of τ are larger than those
obtained from q-gamma fits but still of the order of 1 s.
Therefore our model is selfconsistent. The lack of a com-
plete matching of parameter τ is due to diverse reasons.
On one hand, there is a certain degree of arbitrariness in
the definition of local rates, that in our case were com-
puted over each continuous sequence of touches, through
n/tIN . Moreover, the distribution of local rates as here
defined is not strictly gamma, but only approximately.
Finally, also parameter β is an averaged quantity since
the number of phases may fluctuate throughout a match.
Nevertheless, the comparison between theoretical and em-
pirical distributions supports the present model as a better
approximation than the simple gamma distribution.

Fig. 7. Statistics of in-play intervals. Cumulative histogram
of tIN (a). The straight line corresponds to a exponential with
characteristic time τIN = 28 s. Normalized histogram of the
number of touches in each continuous sequence (b).

Fig. 8. Statistics of out-of-play intervals. Cumulative his-
togram of tOUT (a). In (b), normalized histogram of ln tOUT

(symbols) and Gaussian fit with mean 2.85 and variance 0.45
(solid line).

4 In and out-of-play intervals

In Figure 7a we present the histogram of tIN (dura-
tion of the intervals without interruption). Notice that
tIN =

∑n
i=1 Ti. Then, its PDF can be obtained as

ρ(tIN ) =
∑

n≥1 ρ(tIN |n)P (n), where P (n) is the distri-
bution of the number of touches n in each continuous
sequence. The conditional PDF is in first approximation
Γβ,nτ , assuming that the n inter-touch times are indepen-
dent identically Γβ,τ stochastic variables. On the other
hand, P (n) follows approximately the exponential law
e−n/no/no (Fig. 7b), being no � 7.54 ± 0.21 (from WLS
fit), while 〈n〉 � 8.4 ± 0.3. Under the assumptions above,
one obtains a PDF that can be well approximated by an
exponential with characteristic time τIN � 〈n〉βτ , consis-
tent with the numerical results in Figure 7a.

The histogram of times elapsed between sequences (du-
ration of intervals when the ball is out-of-play) was also
computed and it is exhibited in Figure 8a. Since both tIN

and tOUT statistics are poor over a single match (about
one hundred events), we merged the records of several
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Table 1. Matches of South-American and European championships. Cups are B (Brazilian), C (FIFA World Club), E (UEFA
Champions League), G (German), I (Italian), L (Libertadores), P (Brazilian, São Paulo State), S (Spanish).

Match (cup) Date Match (cup) Date

BR Barcelona 1×1 R.Madrid(S) 02/Apr./06 PA São Paulo 4×0 Atlético-PR(L) 14/Jul./05

RB R.Sociedad 0×2 Barcelona(S) 19/Mar./06 DC D. Cali 0×1 Corinthians(L) 15/Feb./06

AV A.Bilbao 1×1 Villareal(S) 26/Feb./06 CU Corinthians 2×2 U. Católica(L) 22/Feb./06

RA R.Madrid 3×0 Alaves(S) 19/Feb./06 PD Palmeiras 2×0 D. Táchira(L) 25/Jan./06

VB Valencia 1×0 Barcelona(S) 12/Feb./06 PB Paraná 2×0 Botafogo(B) 03/Aug./05

MB Mallorca 0×3 Barcelona(S) 29/Jan./06 PC Paraná 1×2 Corinthians(B) 14/Mar./06

VZ Valencia 2×2 Zaragoza(S) 19/Jan./06 CS Corinthians 1×3 São Paulo(B) 07/May/06

RM Reggina 1×4 Milan (I) 12/Feb./06 SA Santos 2×0 Atlético-PR(B) 23/Apr./06

LF Leverkusen 2×1 E. Frankfurt(G) 28/Jan./06 SF São Paulo 1×0 Flamengo(B) 16/Apr./06

BM Borussia M. 1×3 B. Munchen(G) 27/Jan./06 PS P. Santista 0×5 São Paulo(P) 12/Feb./06

CB Chelsea 2×1 Barcelona (E) 22/Feb./06 SP Santos 1×0 Palmeiras (P) 05/Mar./06

AR Arsenal 0×0 R. Madrid (E) 08/Mar./06 SC S. Caetano 2×1 Corinthians(P) 08/Feb./06

SL São Paulo 1×0 Liverpool(C) 18/Dec./05 SM Santos 3×2 Maŕılia(P) 22/Jan./06

matches (AV, RA, MB, VZ, LF, BM, CB, following Tab. 1).
In these cases goal-keeper movements were computed.

Although the statistics of out-of-play intervals appears
to display a power-law behavior, a more careful analysis
points to a log-normal statistics (Fig. 8b). Up to now,
the results were well understood within the framework of
non-homogeneous Poisson processes. However, in the case
of out-of-play intervals, the PDF basically obeys a log-
normal statistics that is not straightforwardly related to
the previous scenario.

5 Final observations

The statistics of touches can be understood on the basis of
Poissonian arrival or point processes. Basically, events are
not simply Poissonian but can be thought as composed of
different phases, as also observed for compound tasks. This
explains the behavior of the histogram of inter-touch times
in the vicinity of the origin. Meanwhile, non-homogeneities
in the rate of occurrence (changes of rhythm) throughout
a match appear to be responsible for the power law tail
in the distribution of inter-touch times, giving rise to a
q-gamma function. It is noteworthy that a similar mech-
anism based on compound distributions for the obtention
of such PDFs has been proposed within the context of
the “superstatistics” [6], where the fluctuating parameter
is the temperature. Here, we provide an example where
q-gamma distributions arise as a consequence of the fluc-
tuating nature of a relevant parameter. All the main fea-
tures here exhibited and discussed for the matches in Ta-
ble 1 are also observed, in a preliminary analysis, for the
sixty four matches of the 2006 World Cup (results not
shown). Within the simple Poissonian framework, the ef-
fective characteristic time τ (of the order of one second)
does not change significantly from one match to another.
Meanwhile, parameter β exhibits a greater variation, re-
maining approximately between 2 and 4, with average
number of tasks close to 3. In general there is a tendency

that τ is shorter and β larger in more decisive matches
or matches played by highly ranked teams. These trends
are qualitatively expected as far as in such matches play-
ers usually save no efforts, playing faster and using more
elaborated strategies. In fact, larger β already suggests
more developed or complex actions. The introduction of a
further parameter, q, which reflects the degree of inhomo-
geneity of rhythms, improves the description of the tails.
The statistics of the duration of sequences of touches, in-
terrupted by fouls, ball leaving the field, etc., can also be
derived within the same approach used for the statistics
of touches. On the other hand, the statistics of intervals
between sequences of touches is of a different nature, be-
longing to the log-normal class. There are diverse mecha-
nisms that may give rise to such statistics. As an example,
for time series observed in turbulent flows, it has been at-
tributed to a multiplicative random process [11]. However
this issue should be further investigated and deserves sep-
arate work.

We thank Brazilian agency CNPq for partial financial support.
We also thank S. Picoli Jr. for interesting remarks.

References

1. L.C. Malacarne, R.S. Mendes, Physica A 286, 391 (2000);
J. Greenhough, P.C. Birch, S.C. Chapman, G. Rowlands,
Physica A 316, 615 (2002)

2. J. Park, M.E.J. Newman, arXiv:physics/0505169
3. M.E. Glickman, S. Hal, J. Am. Stat. Ass. 93, 25 (1998)
4. R.N. Onody, P.A. de Castro, Phys. Rev. E 70, 037103

(2004)
5. A. Borrie, G.K. Jonsson, M.S. Magnusson, Journal of

Sports Sciences 20, 845 (2002); G.K. Jonsson, S.H.
Bjarkadottir, B. Gislason, in Measuring Behavior 2000, 3rd
International Conference on Methods and Techniques in
Behavioral Research, edited by L.P.J.J. Noldus (Nijmegen,
Netherlands, 2000), pp. 168–171

6. C. Beck, E.G.D. Cohen, Physica A 322, 267 (2003)



R.S. Mendes et al.: Statistics of football dynamics 363

7. C. Tsallis, J. Stat. Phys. 52, 479 (1988); Nonextensive
Mechanics and Thermodynamics, edited by S. Abe, Y.
Okamoto, Lecture Notes in Physics, Vol. 560 (Springer,
Berlin, 2001); C. Tsallis, J. Stat. Phys. 52, 479 (1988);
C. Tsallis in Non-Extensive Entropy-Interdisciplinary
Applications, edited by M. Gell-Mann, C. Tsallis (Oxford
University Press, Oxford, 2004)

8. W. Feller, An introduction to probability theory and its ap-
plications (Wiley, New York, 1968)

9. A.M. Law, W.D. Kelton, Simulation, modeling and analy-
sis (McGraw-Hill, New York, 1991)

10. N.L. Jonhson, S. Kotz, Distribution in statistics: contin-
uous univariate distributions (John Wiley & Sons, New
York, 1970)

11. C. Beck, E.G.D. Cohen, H.L. Swinney, Phys. Rev. E 72,
056133 (2005)

12. S.M.D. Queirós, Europhys. Lett. 71, 339 (2005);
arXiv:physics/0411111; S.M.D. Queirós, C. Anteneodo,
C. Tsallis, Noise and Fluctuations in Econophysics and
Finance, edited by D. Abbott, J.-P. Bouchaud, X.
Gabaix, J.L. McCauley, Proceedings of SPIE, 5848 (SPIE,
Bellingham, WA, 2005), 151; C. Anteneodo, R. Riera,
Phys. Rev. E 71, 201061 (2005)

13. J.H. Jerrold, Biostatistical analysis (Prentice Hall, New
Jersey 1999); W.H. Press, B.P. Flannery, S.A. Teukolsky,
W.T. Vetterling, Numerical Recipes. The Art of Scientific
Computing (Cambridge University Press, Cambridge,
1986)

14. H. Akaike, IEEE Transactions on Automatic Control 19,
716 (1974); G. Schwarz, Annals of Statistics 6, 461 (1978)


